Pandas —— 唯一值unique( ),计数值value_counts( )及成员资格isin( )

Pandas 专栏收录该内容
29 篇文章 0 订阅

唯一值

In [141]: obj=pd.Series(['c','a','d','a','a','b','b','c','c','c'])

In [142]: obj.unique()
Out[142]: array(['c', 'a', 'd', 'b'], dtype=object)

计数值

In [143]: obj.value_counts()
Out[143]:
c    4
a    3
b    2
d    1
dtype: int64

成员资格

In [144]: obj.isin(['a','b'])
Out[144]:
0    False
1     True
2    False
3     True
4     True
5     True
6     True
7    False
8    False
9    False
dtype: bool

得到DataFrame相关列的柱状图

In [145]: data={'Q1':[1,3,4,4,4],'Q2':[2,3,2,2,3],'Q3':[1,5,2,4,4]}

In [146]: frame=pd.DataFrame(data)

In [147]: result=frame.apply(pd.value_counts).fillna(0)

In [150]: frame
Out[150]:
   Q1  Q2  Q3
0   1   2   1
1   3   3   5
2   4   2   2
3   4   2   4
4   4   3   4

In [151]: result
Out[151]:
    Q1   Q2   Q3
1  1.0  0.0  1.0
2  0.0  3.0  1.0
3  1.0  2.0  0.0
4  3.0  0.0  2.0
5  0.0  0.0  1.0

转载地址:

《利用Python进行数据分析》

展开阅读全文
  • 13
    点赞
  • 0
    评论
  • 26
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值