数据结构 —— 算法的时间复杂度

数据结构 专栏收录该内容
50 篇文章 4 订阅

一、非递归情况


二、递归情况(迭代法)


迭代法的基本步骤是先将递归算法简化为相应的递归方程,然后通过重复迭代,将递归方程的右端变换成一个级数,最后求级数的和,再预计和的渐进阶。

示例1:

算法的递归方程为:

  • T(n) = T(n - 1) + O(1)

请给出该算法的时间复杂度

迭代展开:

T(n) = T(n - 1) + O(1) 
	 = T(n - 2) + O(1) + O(1) 
     = T(n - 3) + O(1) + O(1) + O(1) 
     = ...... 
     = O(1) + ... + O(1) + O(1) + O(1) 
     = n * O(1) 
     = O(n) 

示例2:

算法的递归方程为:

  • T(n) = 1,n=1
  • T(n) = 2T(n/2)+n,n>1

请给出该算法的时间复杂度

设 n=2^m,则

T(n) = T(2^m)
	 = 2T(2^(m-1))+2^m
	 = 2[2T(2^(m-2))+2^(m-1)]+2^m
	 = .......
	 = 2^m*T(1)+m*2^m
	 = (m+1)*2^m
	 = (log2n+1)*n
	 = O(nlog2n)
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值